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Abstract

The particle simulation method is used in this paper to explicitly simulate spontaneous crack generation in brittle crustal rocks. Although the
method was previously used to simulate crack generation in small-scale laboratory specimens and mining sites, it has seldom been used to sim-
ulate spontaneous crack generation in large-scale geological systems. If a geological system can be treated as a quasi-static one, the mechanical
response of the system should be independent of the loading rate. Based on this understanding, we have compared the commonly-used contin-
uous loading procedure with a newly-proposed discontinuous loading procedure, which is independent of the loading rate within the elastic range
of a particle system. The use of the discontinuous loading procedure enables the macroscopic elastic modulus of a two-dimensional particle
system to be directly evaluated from the particle stiffness. However, the particle-size sensitivity analysis of at least two different models needs
to be conducted for dealing with the particle size-dependent issue when the particle simulation method is applied to solve crack generation prob-
lems in geological systems. Through the phenomenological modeling of spontaneous crack generation problems, it has been demonstrated that
the particle simulation method is useful for simulating spontaneous crack generation phenomena at geological length scales.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Cracking and fracturing are one of the major failure mech-
anisms in brittle and semi-brittle materials. Since crustal ma-
terials of the Earth can be largely considered as brittle rocks,
cracking and fracturing phenomena are ubiquitous in the upper
crust of the Earth. For example, the study of rock fracturing in
a complicated stress environment has, for many years, been an
attractive topic for the fundamental understanding of earth-
quake mechanisms in the field of seismology and earthquake
engineering. Many tectonic phenomena, such as propagation
of oceanic rifts, magma intrusion due to hydraulic fracturing
of rock masses, and generation of steeply dipping extensional
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cracks from the Earth’s surface, are closely associated with
cracking and fracturing of brittle rock masses. Since cracks
and fractures are important channels to transport mineral-
bearing fluids in porous rocks, the numerical simulation of
a crack generation and propagation problem is equally impor-
tant to the better understanding of the detailed ore-forming
mechanism in a broad range of ore forming systems within
the Earth’s crust (Zhao et al., 1998, 2003, 2006a, 2007a).

Early studies on cracking and fracturing of brittle materials
were based on the concept of fracture mechanics (Inglis, 1913;
Griffith, 1920; Irwin and Washington, 1957), in which both the
stress concentration caused by sharp-tipped flaws (i.e. small
cracks) and the corresponding conditions for propagating these
flaws were well investigated. Due to the limitations of analyt-
ical and computational tools, fracture mechanics at its early
stage was mainly aimed at answering the scientific question
related to when a fracture occurs rather than how it occurs.
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If the stress intensity factor at the tip of a crack is equal to or
greater than the fracture toughness of the material, the crack
becomes unstable and propagates at a speed near that of the
transverse sound wave in the homogeneous linear elastic
material until the stress intensity factor at the tip of the crack
reaches a new stable state. The resulting crack in this case is
often called the catastrophic crack.

However, because of the limitation of the conventional fi-
nite element method (which is usually based on the continuum
mechanics) in simulating a large number of spontaneously
generated cracks, the particle simulation method, such as the
distinct element method that is implemented in a particle
flow code (Cundall and Strack, 1979; Cundall, 2001; Itasca
Consulting Group Inc., 1999; Potyondy and Cundall, 2004),
provides a very useful tool to deal with this particular kind
of problem. Due to the easy consideration of displacement dis-
continuities at a contact between two particles, the formulation
based on the discrete particle simulation is conceptually sim-
pler than that based on the continuum mechanics, because
crack generation at a contact between two particles is a natural
part of the particle simulation process.

The particle simulation method (e.g. the distinct element
method) has been successfully used to solve a wide range
of scientific and engineering problems such as those associ-
ated with soil/rock mechanics and geotechnical engineering
(Cundall and Strack, 1979; Bardet and Proubet, 1992;
Hazzard et al., 2000; Hazzard and Young, 2000; Cundall,
2001; Potyondy and Cundall, 2004; Klerck et al., 2004;
Owen et al., 2004; McBride et al., 2004; Schubert et al.,
2005; Zhao et al., 2006b), and those associated with geolog-
ical and geophysical problems in both two and three dimen-
sions (Saltzer and Pollard, 1992; Antonellini and Pollard,
1995; Donze et al., 1996; Scott, 1996; Strayer and Huddleston,
1997; Camborde et al., 2000; Iwashita and Oda, 2000; Finch
et al., 2003, 2004; Strayer and Suppe, 2002; Burbidge and
Braun, 2002; Imber et al., 2004). In particular, Finch et al.
(2003, 2004) used distinct element modeling to investigate
the contractional and extensional fault-propagation folding
above rigid basement blocks. Strayer and Suppe (2002) used
the distinct element method to simulate the out-of-plane
motion of a thrust sheet during along-strike propagation of
a thrust ramp. Burbidge and Braun (2002) employed the
distinct element method to investigate the evolution of accre-
tionary wedges and fold-and-thrust belts within the upper
crust of the Earth. Imber et al. (2004) used the three-
dimensional distinct element modeling to simulate the relay
growth and breaching along normal faults. Although the par-
ticle simulation method was successfully used to solve many
large-scale geological problems, little work, if any, has been
reported on using the particle simulation method to deal with
spontaneous crack generation problems in the upper crust of
the Earth. However, the particle simulation method has been
developed and used to simulate microscopic crack generation
in small-scale laboratory specimens and mining sites (Itasca
Consulting Group Inc., 1999; Potyondy and Cundall, 2004;
Zhao et al., 2006b). Since both the time-scale and the
length-scale are quite different between laboratory specimens
and geological systems, it is necessary to apply the particle
simulation method for solving spontaneous crack generation
problems in the upper crust of the Earth.

If a geological system can be treated as a quasi-static one,
then the mechanical response of the system should be indepen-
dent of time so that the system response is loading-rate inde-
pendent. Based on this understanding, we have examined the
continuous loading procedure that is often used in PFC2D
and a newly-proposed discontinuous loading procedure, which
is independent of the loading rate, especially in the elastic
response range of a particle system (Zhao et al., 2007b).

2. Concept and loading procedure of the particle
simulation method

The central concept of the particle simulation method is
that brittle rocks are assumed to be made up of many solid par-
ticles of different shapes and sizes. Each particle is connected
through contact points with its neighboring particles. Interac-
tion forces between any two particles are transferred through
their contacts. This means that the mechanical properties of
a particle are represented by the lumped mechanical parame-
ters at its contacts with other particles. The useful lumped
mechanical parameters are the normal and tangential stiffness
of a particle. Since the normal stiffness and tangential stiffness
are used to reflect the deformation characteristics of a particle,
they are usually directly proportional to the elastic modulus of
the particle system. In order to simulate tensile and shear fail-
ures at a contact between two particles, both the normal bond
(representing the tensile strength) and the shear bond (repre-
senting the shear strength) are introduced in the particle sim-
ulation method (Wang et al., 2000; Delenne et al., 2004).
The motion of each particle is described by the Newton’s
second law. Contact forces at a contact between two particles
are calculated using a linear or non-linear relationship between
force and relative displacement at this contact. If a particle is
in contact with a boundary of the system, the contact force be-
tween the particle and the boundary can be calculated in
exactly the same way as mentioned above, except for replacing
the contacted neighboring particle by the contacted boundary.
The total forces exerted on a particle are equal to the summa-
tion of all its contact forces at all contact points with other par-
ticles and boundaries of the system. The above concept was
initially proposed in the distinct element method (Cundall
and Strack, 1979; Cundall, 2001; Itasca Consulting Group
Inc., 1999; Potyondy and Cundall, 2004) and it has been
recently enhanced and implemented in the two-dimensional
particle flow code (i.e. PFC2D).

A fundamental assumption associated with the distinct ele-
ment method is that a quasi-static problem can be turned into
an artificial dynamic problem, so that the explicit dynamic re-
laxation method is used to obtain the quasi-static solution from
solving the artificial dynamic problem. In addition, the distinct
element method is based on the idea that the time step used in
the simulation is chosen so small that force, displacement,
velocity and acceleration cannot propagate from any particle
farther than its immediate neighbors during a single time



1036 C. Zhao et al. / Journal of Structural Geology 29 (2007) 1034e1048
step (Potyondy and Cundall, 2004). The servo-control tech-
nique (Itasca Consulting Group Inc., 1999) is often used to ap-
ply the equivalent velocity of applied stresses or forces to the
loading boundary of the particle model. This posed an impor-
tant scientific question: Is the mechanical response of a particle
model dependent on the loading procedure to apply ‘‘loads’’ at
the loading boundary of the particle model? Although this
question was theoretically discussed in a recent publication
(Zhao et al., 2007b), it needs to be investigated numerically
in detail in this paper. If the mechanical response of a particle
model is independent of the loading procedure, then this issue
can be neglected when the application range of the particle
simulation method is extended from a small-scale laboratory
test to a large-scale geological problem.

To illustrate the ‘‘load’’ propagation mechanism associated
with the distinct element method that is implemented in
PFC2D, a one-dimensional idealized model consisting of ten
identical particles is considered in Fig. 1. The model is in
a rest state at the start of the simulation (i.e. at t ¼ 0). It is as-
sumed that each particle is simulated as a circular disk of unit
thickness. Because the main purpose of this simulation is only
to illustrate the ‘‘load’’ propagation mechanism, the normal
contact stiffness and density of all the particles are assumed
to be 2.0 KN/m and 1273.24 kg/m3 respectively. The radii of
all the particles are assumed to be 0.5 m, resulting in a mass
of 1000 kg for each individual particle. Since two particles
are connected in series, the total contact stiffness between
any two particles is equal to 1.0 KN/m in this simulation. Al-
though the ‘‘load’’ can be either a directly-applied force or an
indirectly-applied force due to the constant velocity of a load-
ing boundary, a directly-applied force of 100 N is considered
in this idealized conceptual model. Damping is neglected,
while the critical time step (Itasca Consulting Group Inc.,
1999) is used, so that Dt ¼ Dtcritical ¼

ffiffiffiffiffiffiffiffiffi
m=k

p
¼ 1s in the com-

putation. Note that m stands for the mass of a particle, while k
stands for the normal contact stiffness between any two parti-
cles. What we need to emphasize here is that when a ‘‘load’’ is
applied to a particle system, what is the appropriate time to
record the correct response of the whole system due to this
‘‘load’’? This issue is important due to the fact that the
particle-scale material properties are only considered in a
particle model and that a biaxial compression test is often
used to determine the macroscopic material properties of the
particle model.

Since the ‘‘load’’ applied to the first particle of this ide-
alized model can be viewed as a dynamic disturbance, it will
propagate at the rate of one particle per time step, as clearly
demonstrated by the simulation result. The reason for this is
that if damping is neglected and horizontal movement is
only considered in this idealized model, the displacement
of particle a at a given time can be essentially calculated
using the following formulas (Itasca Consulting Group
Inc., 1999).

�
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�tþDt=2

¼
�
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�
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where xt
a and xtþDt

a are the horizontal coordinates to express
the position of particle a at the time of t and t þ Dt; ma is
the mass of particle a; Ft

ax is the total horizontal force exerted
on particle a at the time of t; ut

a and utþDt
a are the horizontal

displacements of particle a at the time of t and t þ Dt; Dt is
the time step in the computation.

Because the mass and the normal stiffness coefficient be-
tween any two particles have the same values respectively,
the displacement of particle 1 (i.e. the particle with ‘‘load’’
P) is D1 ¼ PDt2=m ¼ 100� 12=1000 ¼ 0:1m at the end of
the first time step (i.e. t ¼ 1 Dt, where Dt is the time step).
The displacement obtained from this theoretical consideration
is exactly the same as that obtained from the numerical parti-
cle simulation. Note that D1 is the displacement of particle 1,
while arrows show the displacements of each individual parti-
cle simulated in Fig. 1. Because the critical time step (Itasca
Consulting Group Inc., 1999) is used in the computation,
namely Dt ¼ Dtcritical ¼

ffiffiffiffiffiffiffiffiffi
m=k

p
, the displacement of particle

1 (i.e. the particle with ‘‘load’’ P) can be theoretically
expressed as D1 ¼ P=k at the end of the first time step (i.e.
t ¼ 1Dt). The simulation results clearly show that, as expected,
the ‘‘load’’ can only propagate from a particle to its immediate
neighboring particles within a single time step. Thus, during
the first time step, other nine particles in the right part of
the model remain at rest. Obviously, the ‘‘load’’ propagates
through the whole system at the end of t ¼ 10 Dt, resulting
in a displacement of D1 ¼ 10P=k ¼ 1:0m for particle 1.

It needs to be pointed out that in the distinct element sim-
ulation of this idealized system, there are two wave propaga-
tions. One is the simulated wave propagation, which moves
one particle size per time step. The other is the physical
wave propagation, determined by Dtcritical ¼

ffiffiffiffiffiffiffiffiffi
m=k

p
. Generally,

for the sake of ensuring the numerical stability in complicated
particle simulations, the simulated wave propagation should
be quicker than the corresponding physical wave propagation,
so that Dt < Dtcritical ¼

ffiffiffiffiffiffiffiffiffi
m=k

p
. For the purpose of illustrating

the force propagation mechanism within this idealized system,
we use Dt ¼ Dtcritical ¼

ffiffiffiffiffiffiffiffiffi
m=k

p
, implying that the simulated

wave propagation is comparable to the physical wave propaga-
tion, which results in an exact solution for the distinct element
simulation of this idealized system.

At this stage, it is interesting to investigate the speed at
which the elastic stress (strain) wave propagates in this ideal-
ized model. Clearly, the corresponding wave speed can be ex-
pressed as Csimulation ¼ D=Dtcritical, where D is the diameter of
the particles. Again, it is assumed that all the particles in the
idealized model have the same diameters. For this idealized
model, we have E ¼ k and m ¼ 1=4rpD2, where E is the elas-
tic modulus of the particle material and r is the density of the
particle material. This results in a wave speed of Csimulation ¼ffiffiffiffiffiffiffiffi

4=p
p ffiffiffiffiffiffiffiffi

E=r
p

¼
ffiffiffiffiffiffiffiffi
4=p

p
Cp; where Cp is the P-wave speed of the
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(t = 1   t, D1 = 0.1m)
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(t = 10   t, D1 = 1.0m)
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P

(t = 0, D1 = 0)

Fig. 1. Simulated force propagation in a ten-particle system at different time instants. The orange line shows the contact force between particles, while yellow

arrows show the displacements at the mass centers of particles.
particle material. This indicates that the elastic wave energy
(which transmits the applied load through the idealized model)
propagates at a wave speed, which is a little higher than the
P-wave speed.

If this one-dimensional idealized model is comprised of n
particles of equal normal stiffness and mass, then the displace-
ment of particle 1 (i.e. the particle with ‘‘load’’ P) is nP=k at
the end of t ¼ n Dt. This means that if one uses the record of
the ‘‘load’’ and displacement at the end of the immediate
loading step to determine the elastic modulus of this one-
dimensional idealized particle system, then the determined
elastic modulus will be exaggerated to n times, demonstrating
that the continuous loading procedure (see Fig. 2) may be in-
accurate when it is used with PFC2D to conduct the laboratory
specimen test. This is because it is impossible to take the cor-
rect record of the ‘‘displacement’’, just at the end of a ‘‘load’’
increment. In other words, when a ‘‘load’’ increment is applied
to the particle system, it must take a considerable number of
time steps for the system to reach a quasi-static equilibrium
state. It is the displacement associated with the quasi-static
equilibrium state that represents the correct displacement of
the system due to this particular ‘‘load’’ increment. To solve
this problem, a newly-proposed discontinuous loading proce-
dure is used in this paper (Zhao et al., 2007b). The discontin-
uous loading procedure (see Fig. 2) is comprised of two main
types of periods, a loading period and a frozen period. In the
loading period, a velocity increment is applied to the loading
boundary of the system, while in the frozen period the loading
boundary is fixed to allow the system to reach a quasi-static
equilibrium state after a considerable number of time steps.
This ensures that the potentially-induced momentum due to
the decelerations and accelerations associated with the
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discontinuous loading procedure can be died out before the
solution is considered as converged. It needs to be pointed
out that a pair of load and displacement (or stress and strain)
is correctly recorded at the end of a frozen period (Zhao et al.,
2007b).

Compared with the finite element method with automatic
re-meshing algorithms (Zienkiewicz and Zhu, 1991; Bouchard
et al., 2003), the particle simulation method has the following
four main advantages, at least from the crack-generation sim-
ulation point of view. Firstly, since there is no mesh in the par-
ticle simulation method, crack generation in brittle materials
can be modeled in a much easier and flexible manner. For ex-
ample, if a normal contact force exceeds the corresponding
normal tensile bond strength at a contact between two particles
or between a particle and a boundary, the normal tensile bond
is broken and therefore, a tensile crack, which is equivalent to
Mode I crack in the conventional fracture mechanics sense, is
generated at the contact. Similarly, if a shear contact force ex-
ceeds the corresponding shear bond strength at a contact be-
tween two particles or between a particle and a boundary,
the tangential shear bond is broken and therefore, a shear
crack, which is equivalent to Mode II or Mode III crack in
the conventional fracture mechanics sense, is generated at
the contact. Secondly, the dynamic process of crack generation
can be automatically simulated in the particle simulation
method. This means that the subcritical crack growth mecha-
nism, which is often difficult to simulate in the conventional
finite element method with automatic re-meshing algorithms
(Zienkiewicz and Zhu, 1991; Bouchard et al., 2003), can be
modeled using the particle simulation method. Thirdly, be-
cause only one particle is contributed to the ‘‘global’’ matrix
of the system in the particle simulation method, a significant
reduction in the requirement for computer memory can be
made during every step of the simulation. Fourthly, multi-scale

(Continuous loading procedure)

(Discontinuous loading procedure)

t0

V

V=Vwall

V=Vwall

t=tfull 

t=tfull 
t0

V

Fig. 2. Illustration of continuous and discontinuous loading procedures imple-

mented in the particle simulation. V and Vwall are the loading rate and designed

loading rate at the loading boundary of a particle system, respectively. t is the

simulation time step, while tfull is the time step when the loading rate reaches

the designed loading rate at the loading boundary of a particle system.
phenomena can be simulated in a relatively simple manner.
For example, by allowing a particle to be split into several
smaller particles, particle collapsing phenomena can be auto-
matically simulated. By joining several particles together,
massive conglomeration phenomena of particles can also be
simulated.

3. Effects of loading rates and particle size on
mechanical response of a particle system using
the discontinuous loading procedure

Since both the time-scale and the length-scale are signifi-
cantly different between engineering problems and geological
ones, it is necessary to deal with an upscale issue when the
particle simulation method is applied to simulate geological
systems. An important aspect of the upscale issue is how to
correctly use the rock mechanical property measured from
a laboratory experiment to simulate the mechanical response
of crustal rocks using the particle simulation method. Because
the particle-scale mechanical properties of materials, such as
the particle stiffness and bond strength, are used in particle
simulation models but they are not known a priori, it is impor-
tant to deduce these particle-scale mechanical properties of
materials from the related macroscopic ones measured from
both laboratory and field experiments. This means that an in-
verse problem needs to be solved through the numerical sim-
ulation of a particle system. For such an inverse problem, input
parameters are the macroscopic mechanical properties of ma-
terials, while the particle-scale mechanical properties of mate-
rials, such as the particle stiffness and bond strength, are
unknown variables and therefore, need to be determined
(Zhao et al., 2007b). In geological practice, a kilometer-
length-scale specimen is often used to conduct a biaxial
compression test and to measure the related macroscopic me-
chanical properties, such as the elastic modulus and material
strength, from the mechanical response of the particle model
having an assumed set of particle-scale mechanical properties
of rocks. However, if some mechanical properties are indepen-
dent of particle size or other size-dependent mechanical prop-
erties may be determined from an appropriate upscale rule,
then the expected particle-scale mechanical properties of
materials to be used in a particle model can be determined
without a need to conduct the trial-and-error exercise (Wang
et al., 2000; Griffiths and Mustoe, 2001). From this point of
view, it is necessary to investigate the effect of both the load-
ing rate and the particle size on the mechanical response of
a particle model through conducting a series of biaxial com-
pression tests in this section.

As shown in Fig. 3, two samples of different sizes are con-
sidered in the particle simulation tests. The first test sample is
of a small size of 1 by 2 m and simulated using 100 and 1000
particles respectively. When the small test sample is simulated
using 100 particles, the maximum and minimum radii of par-
ticles are approximately 0.0545 m and 0.0363 m, resulting in
an average radius of 0.0454 m. However, when the small
test sample is simulated using 1000 particles, the maximum
and minimum radii of particles are approximately 0.0172 m
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and 0.0115 m, resulting in an average radius of 0.0144 m. On
the contrary, the second test sample is of a large size of 1 by
2 km and also simulated using 100 and 1000 particles. In the
case of the large test sample of 100 particles, the maximum
and minimum radii of particles are approximately 54.52 m
and 36.35 m, resulting in an average radius of 45.43 m, while
in the case of 1000 particles, the maximum and minimum radii
of particles are approximately 17.24 m and 11.49 m, resulting
in an average radius of 14.37 m. The porosity of both the small
and the large test samples is set to be 0.17 in the particle sim-
ulation. The confining stress is assumed to be 10 MPa in the
following numerical experiments. The density of the particle
material is 2500 kg/m3 and the friction coefficient of the par-
ticle material is 0.5. It is noted that since this investigation is

Fig. 3. Initial geometrical shapes of the samples used in the numerical test.
focused on the particle simulation of quasi-static problems, the
friction coefficient of the particle material is assumed to be
constant and independent of time in this investigation. How-
ever, if one is interested in the application of the particle
simulation method to seismological problems, then the time-
dependent friction laws (e.g. Dieterich, 1978; Ruina, 1983;
Bizzarri et al., 2001) should be used in the simulation. Due
to a significant size difference between the small and large
test samples, the size effect of the test sample can be investi-
gated through the particle simulation.

The stiffness and bond strength of particles in a test sample
can be predicted using the macroscopic mechanical properties
such as the elastic modulus, tensile and shear strength of par-
ticle materials. From the analog of a two-circle contact with an
elastic beam (Itasca Consulting Group Inc., 1999), it has been
demonstrated that there may exist an upscale rule, which states
that the contact stiffness of a circular particle is only depen-
dent on the macroscopic elastic modulus and independent of
the diameter of the circular particle. The value of the contact
stiffness of a circular particle is equal to twice that of the mac-
roscopic elastic modulus of the material. On the other hand,
the contact bond strength of a circular particle is directly
proportional to both the tensile/shear strength of the particle
material and the diameter of the circular particle. Keeping
the above considerations in mind, the following macroscopic
mechanical properties of rock masses are used to determine
the contact mechanical properties of the particle material
used in the simulation. The macroscopic elastic modulus of
the particle material is 0.5 GPa, resulting in the contact stiff-
ness (in both the normal and the tangential directions) of
1.0 GN/m for each particle in both the small and the large
test samples. The macroscopic tensile strength of the particle
material is 10 MPa, while the macroscopic shear strength of
the particle material is 100 MPa for both the small and the
large test samples. Damping is used so that an equilibrium
state can be reached in the particle simulation.

The robustness of the discontinuous loading procedure can
be examined by the simulation-solution independence of the
loading rate, which is the fundamental characteristic of
a quasi-static problem. As usual, the servo-control technique
(Itasca Consulting Group Inc., 1999) is used to apply the
equivalent velocity of applied stresses or forces to the loading
boundary of the particle model. The equivalent velocity is
called the loading rate hereafter. Fig. 4 shows the effect of
the loading rate on the curve of deviatoric stress versus axial
strain for both the small and the large samples of 1000 parti-
cles. Fig. 5 displays the effect of the loading rate on the curve
of volumetric strain versus axial strain, while Fig. 6 shows the
effect of the loading rate on the curve of confining stress ver-
sus axial strain. It is obvious that the simulated stress-strain
curve and volumetric-axial strain curve are independent of
the two loading rates (i.e. LR ¼ 1 m/s and LR ¼ 10 m/s in
this figure) within the elastic response range of the test mate-
rial (i.e. before the occurrence of the first crack within the test
sample). It can be found, from the stress-strain curve, that the
simulated elastic modulus of the particle material is equal to
0.5 GPa, which is identical to the desired value of the expected
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macroscopic elastic modulus of the particle material. This in-
dicates that the upscale rule established from the analog of
a two-circle contact with an elastic beam (Itasca Consulting
Group Inc., 1999) is appropriate for predicting the elastic
modulus when the discontinuous loading procedure is used
in the simulation of a particle model.

After the deviatoric stress, which is defined as axial stress
minus confining stress, reaches its maximum value (i.e. the
yielding strength) at an axial strain of about 10%, the mechan-
ical responses of these two different length-scale samples are
different, indicating that once the major failure occurs, the me-
chanical response of the particle sample is strongly non-linear
and dependent on both the loading rate and the particle size. In
the case of the small-size sample of 1000 particles, the average
size of particles is small enough to capture the major micro-
scopic seismicity that occurs during any major failure process
of the sample. As shown in Fig. 4A, there are three major fail-
ures occurring at the axial strain of about 10%, 14% and 19%
respectively. These major failures can cause a considerable
amount of elastic energy release so that they have an impact
on the confining stress applied to the lateral boundaries of
the sample. This phenomenon is clearly recorded in the confin-
ing stress versus axial strain curve shown in the small-size
model of 1000 particles (see Fig. 6A).

Although the linear elastic behavior of both the small and
the large test samples of 1000 particles is independent of the
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Fig. 4. Effects of loading rate on the curve of deviatoric stress versus axial

strain. LR is the loading rate applied to the test sample.

sample size, particle size and loading rate, it may be depen-
dent on the total number of particles used in a particle simula-
tion. If the total number of particles in a particle simulation is
too small, the macroscopic behavior of the particle system
may not be appropriately simulated because of the poor reso-
lution of the simulation results. This issue can be investigated
through conducting biaxial compression tests of both the small
and the large test samples of 100 particles (see Fig. 3). Fig. 7
shows the effect of the total particle number on the curve of
deviatoric stress versus axial strain for both the small and
the large test samples of 100 particles. Fig. 8 displays the ef-
fect of the total particle number on the curve of volumetric
strain versus axial strain, while Fig. 9 shows the effect of
the total particle number on the curve of confining stress ver-
sus axial strain for both the small and the large test samples of
100 particles. It is noted that even though 100 particles are
only used to simulate both the small (i.e. 1 by 2 m) and the
large (i.e. 1 by 2 km) test samples, the linear elastic behavior
of these two test samples (before the occurrence of the first
crack within the test samples) remains independent of the sam-
ple size, particle size and loading rate in the case of using the
discontinuous loading procedure to conduct biaxial compres-
sion tests. By comparing the simulation results obtained
from 100-particle samples (see Figs. 7e9) with those obtained
from 1000-particle samples (see Figs. 4e6), it is recognized
that although the maximum yielding strength is of the same or-
der of magnitude for all the simulation results, there is a con-
siderable failure (see Fig. 7) in the 100-particle samples before
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their linear elastic response reaches the corresponding maxi-
mum yielding strength. This phenomenon indicates that due
to the use of a small number of particles, both the 100-particle
samples of different sample sizes cannot capture the small-
scale and microscopic-scale failure behavior of the particle
system. This conclusion can be further confirmed by compar-
ing the simulation results shown in Fig. 9 with those shown in
Fig. 6. It is clearly observed that the 100-particle samples of
two different sample sizes cannot capture the primary micro-
scopic seismicity that occurs during a primary failure process,
which is in correspondence with the biggest drop in the devia-
toric stress of the test sample. In theory, the greater the total
number of particles is used in a particle simulation, the better
the detailed microscopic phenomenon can be captured in the
particle model. However, in practice, the greater the total num-
ber of particles is used in a particle simulation, the larger the
computer efforts are required in the simulation. For this rea-
son, the total number of particles that are used in a particle
simulation should be adequate, so that the concerned macro-
scopic phenomenon in a large-scale geological system can
be simulated without wasting any computer efforts. Therefore,
it is recommended that the particle-size sensitivity analysis of
at least two different models, which have different total num-
ber of particles, be carried out to confirm the particle simula-
tion result of a large-scale geological system.

It is worth comparing the particle simulation results
obtained from using the discontinuous loading procedure with
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Fig. 6. Effects of loading rate on the curve of confining stress versus axial

strain. LR is the loading rate applied to the test sample.
those obtained from using the continuous loading procedure.
For this purpose, both the small and the large test samples
of 1000 particles are used to conduct biaxial compression tests
using the continuous loading procedure. Fig. 10 shows the ef-
fect of the loading rate on the curve of deviatoric stress versus
axial strain for both the small and the large test samples of
1000 particles using the continuous loading procedure. It is
obvious that the general solution pattern for both the small
and the large test samples of 1000 particles is very similar,
indicating that the sample size of a particle model has little
influence on the mechanical response of the model, even if
the continuous loading procedure is used to produce the sim-
ulation results. However, the mechanical responses of both the
small and the large test samples of 1000 particles are clearly
dependent on the loading rate, especially in the case of the
loading rate being 10 m/s. For this particular loading rate, as
shown in Fig. 4, the mechanical responses of both the small
and the large test samples of 1000 particles are independent
of the loading rate in the case of using the discontinuous load-
ing procedure. Nevertheless, the loading-rate dependence of
the mechanical response obtained from using the continuous
loading procedure is greatly reduced when the smaller loading
rate (i.e. LR ¼ 1.0 m/s and LR ¼ 0.1 m/s) is used in the parti-
cle simulation, indicating that the use of the continuous load-
ing procedure in a particle simulation may produce some
useful results as long as the loading rate is kept very small
in the particle simulation. In the case of the loading rate being

Fig. 7. Effects of the total number of particles on the curve of deviatoric stress

versus axial strain. LR is the loading rate applied to the test sample.
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10 m/s, the maximum yielding strength obtained from using
the continuous loading procedure is almost twice that obtained
from using the discontinuous loading procedure, implying that
the maximum yielding strength can be overestimated from us-
ing the continuous loading procedure. It is interesting to note
that the mechanical response obtained from using the contin-
uous loading procedure exhibits the stronger ductile behavior
(Fig. 10), while the mechanical response obtained from using
the discontinuous loading procedure exhibits the stronger brit-
tle behavior (Fig. 4) for exactly the same test sample. This
demonstrates that in addition to the conceptual soundness,
the newly-proposed discontinuous loading procedure is more
appropriate than the continuous loading procedure in dealing
with the numerical simulation of the brittle behavior of crustal
rocks.

Since the main purpose of this study is to simulate sponta-
neously-distributed crack generation in brittle crustal rocks us-
ing the particle simulation method, it is important to examine
the accuracy of the predicted crack patterns from using the dis-
continuous loading procedure. In theory, the smallest particle
size of a particle simulation model is related directly to the
material fracture toughness (Potyondy and Cundall, 2004), es-
pecially under mixed compressive-extensile conditions. In the
case of modeling damage processes for which macroscopic
cracks form, the smallest particle size and model properties
should be chosen to match the material fracture toughness as
well as the unconfined compressive strength. However, it
was also indicated that the formation of a failure plane and
secondary macro-cracks may be independent of particle size

Fig. 8. Effects of the total number of particles on the curve of volumetric strain

versus axial strain. LR is the loading rate applied to the test sample.
under mixed compressive-shear conditions (Potyondy and
Cundall, 2004). In order to test whether or not the formation
of macroscopic cracks is dependent on the smallest particle
size, both the small and the large test samples of 1000 particles
are used to conduct biaxial compression tests using the discon-
tinuous loading procedure. In the case of the small test sample
of 1000 particles, the radius of the smallest particle is
0.0115 m, while in the case of the large test sample of 1000
particles, the radius of the smallest particle is 36.35 m.
Fig. 11 shows the effect of the loading rate and particle size
on the crack patterns of two different length-scale test
samples. These crack patterns are obtained when the axial
strain of the test sample is about 35%. It is noted that in the
case of either a small test sample of 1 by 2 m or a large test
sample of 1 by 2 km, the predicted crack patterns are essen-
tially similar, at least from the phenomenological modeling
point of view. This demonstrates that the discontinuous load-
ing procedure is independent of the loading rate, even though
it is used to simulate the spontaneously-distributed crack gen-
eration in brittle crustal rocks. However, it is obvious that there
is a remarkable discrepancy between the two kinds of crack
patterns obtained from the small and large test samples, indi-
cating that the smallest particle size used in a particle simula-
tion has a significant influence on the predicted crack pattern
of the particle model. Since the particle size-dependent issue
cannot be completely removed when we apply the particle
simulation method to solve crack generation problems in
large-scale geological systems, it is recommended that the

Fig. 9. Effects of the total number of particles on the curve of confining stress

versus axial strain. LR is the loading rate applied to the test sample.
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particle-size sensitivity analysis of at least two different
models, which have the same geometry but different smallest
particle size, be carried out to confirm the particle simulation
result of a large-scale geological system.

4. Phenomenological modeling of spontaneously
distributed crack generation in brittle crustal rocks

In order to illustrate the possible application of the particle
simulation method combined with the discontinuous loading
procedure to large-scale geological problems, the phenomeno-
logical modeling of spontaneously distributed crack genera-
tion in brittle crustal rocks is carried out in this section. The
problem to be considered is related to the basement controlled
reverse faulting, resulting in crustal fault-propagation folding
above rigid basement blocks. The reason for choosing this
kind of problem is that it has been widely investigated for
many years (see Finch et al., 2003, 2004, and the references
therein). For instance, Finch et al. (2003, 2004) used the dis-
tinct element modeling to investigate the mechanical deforma-
tion related to the formation and evolution of both the
contractional and the extensional fault-propagation folding
above rigid basement blocks. For the purpose of justifying
the distinct element method for simulating large-scale geolog-
ical systems, Finch et al. (2003, 2004) compared the particle
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to the test sample.
simulation results with those obtained from both the trishear
kinematical model (Erslev, 1991) and field observations.
This means that in terms of the mechanical deformation pat-
terns, this kind of problem can be used as a benchmark prob-
lem, against which a combination of the particle simulation
method and the discontinuous loading procedure can be vali-
dated. Although the mechanical deformation patterns related
to the formation and evolution of both the contractional and
the extensional fault-propagation folding above rigid basement
blocks were widely investigated, little, if any, work has been
carried out on the particle simulation of spontaneous crack
generation for this kind of problem. Therefore, this section
is focused on demonstrating the application of the particle
simulation method combined with the discontinuous loading
procedure to large-scale geological problems through the par-
ticle simulation of the spontaneous crack generation caused by
the crustal fault-propagation folding above rigid basement
blocks.

Fig. 12 shows the geometry of the computational model, in
which the length and initial thickness are 10 km and 2.5 km
respectively. The dip angle of a pre-existing fault in the rigid
basement is 60 degrees (i.e. q ¼ 60�). The model is simulated
by 4000 particles. The maximum and minimum radii of parti-
cles are approximately 30.48 m and 20.32 m, resulting in an
average radius of 25.4 m. Although the model is mechanically

Fig. 11. Effects of loading rate and particle size on crack patterns of two dif-

ferent length-scale samples. LR is the loading rate applied to the test sample.
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Fig. 12. Geometry of the computational model.
comprised of one homogeneous layer, we use 10 approxi-
mately flat-lying and constant-thickness marker beds to mon-
itor the deformation patterns. The macroscopic elastic
modulus of the particle material used in the model is 5 GPa,
resulting in the contact stiffness (in both the normal and the
tangential directions) of 10 GN/m for each particle in the com-
putational model. The macroscopic tensile strength of the par-
ticle material is 20 MPa, while the macroscopic shear strength
of the particle material is 200 MPa for the computational
model. The density of the particle material is assumed to be
2500 kg/m3 in the particle simulation. Although two vertical
boundaries are fixed, particles in contact with them are al-
lowed to move in the vertical direction but not allowed to
move in the horizontal direction of the computational model.
Since the top of the computational model is a free surface,
a stress-free boundary condition is applied to this boundary.
In order to simulate the slip of the pre-existing fault, the right
half of the bottom is fixed, while the left half of the bottom is
Fig. 13. Crack generation and evolution within the computational model (crack pattern with showing particles). H is the initial thickness of the computational

model.
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Fig. 14. Crack generation and evolution within the computational model (crack pattern without showing particles). H is the initial thickness of the computational

model.
allowed to move in the direction parallel to the pre-existing
fault plane within the rigid basement. The gravity effect is
considered by running the computational model to reach an
initial equilibrium state due to gravity.

Fig. 13 shows the crack generation and evolution process of
the computational model at three different stages of 10%H,
20%H and 30%H upward movement of the left part of the
basement, where H is the initial thickness of the computational
model. In order to display the crack pattern clearly, the parti-
cles shown in Fig. 13 are removed so that only the crack pat-
tern is shown in Fig. 14. From the simulation results shown in
these two figures, it is observed that two major macroscopic
cracks are generated as a result of many small-scale cracks be-
ing linked together. There is a triangle zone between these two
major macroscopic cracks. Although one major macroscopic
crack is generated along the slip direction of the pre-existing
fault in the rigid basement, the other major macroscopic crack
is clearly generated within the hangingwall of the simulated
brittle upper crust. It is noted that the deformation pattern dis-
played in Fig. 13 is very similar to that reported in the previous
publication by Finch et al. (2003). Since Finch et al. (2003,
2004) compared the particle simulation results with those ob-
tained from both the trishear kinematical model (Erslev, 1991)
and field observations, it has demonstrated that in addition to
the conceptual soundness, the discontinuous loading procedure
is correct and useful for dealing with the numerical simulation
of the brittle behavior of crustal rocks.

In order to compare the predicted crack pattern from using
the discontinuous loading procedure with that from using the
continuous loading procedure, the same computational model
was rerun using the continuous loading procedure. Fig. 15
shows the comparison of crack patterns due to two different
loading procedures. The crack patterns shown in this figure
are generated when the vertical component of the slip of the
pre-existing fault is about 30% initial thickness of the compu-
tational model. It is observed that there are some significant
differences between the simulation results obtained from using
two different loading procedures. For example, a large crack is
generated in the top two marker beds in the case of using the
discontinuous loading procedure in the particle simulation, but
this phenomenon cannot be observed in the case of using the
continuous loading procedure. In addition, the microscopic
cracks are more diffusely distributed within the hangingwall
when the continuous loading procedure is used in the particle
simulation. The reason for these differences is that the use of
the continuous loading procedure may exaggerate the ductile
behavior of brittle rocks and therefore, the continuous loading
procedure is not appropriate for simulating the brittle behavior
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Fig. 15. Comparison of crack patterns due to two different loading procedures.
of crustal rocks in a particle simulation. On the contrary, the
use of the discontinuous loading procedure can correctly rep-
resent the brittle behavior of brittle rocks, as mentioned in the
previous sections. For this reason, the newly-proposed discon-
tinuous loading procedure is more suitable for simulating
spontaneously-distributed crack generation in brittle crustal
rocks.

5. Conclusions

The particle simulation method has been successfully used
to simulate spontaneous crack generation in large-scale geo-
logical systems. Since both the time-scale and the length-scale
are quite different between laboratory specimens and geolog-
ical systems, it is necessary to deal with an upscale issue when
the particle simulation method is applied to solve geological
problems. If a geological system can be treated as a quasi-
static one, then the mechanical response of the system should
be independent of the loading rate. Based on this understand-
ing, we have examined the continuous type of loading proce-
dure that is commonly used in PFC2D and a newly-proposed
discontinuous type of loading procedure, which is independent
of the loading rate, particle size and sample size, especially in
the elastic response range of a particle system. The use of the
discontinuous type of loading procedure enables the macro-
scopic elastic modulus of a two-dimensional particle system
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to be directly evaluated from the mechanical properties of
a particle without a need to conduct biaxial compression tests.
However, the particle size-dependent issue cannot be com-
pletely removed when the particle simulation method is ap-
plied to solve crack generation problems in geological
systems. It is possible to deal with this issue through particle-
size sensitivity analyses of at least two different models.

Due to the easy consideration of displacement discontinu-
ities at a contact between two particles, the formulation based
on the discrete particle simulation is conceptually simpler
than that based on the continuum mechanics, because crack
generation at a contact between two particles is a natural
part of the particle simulation process. The major advantage
in using the particle simulation method is that since there is
no mesh in the particle simulation method and the interaction
between particles is explicitly expressed by the contact force/
displacement, crack generation in brittle materials can be
modeled in a much easier and explicit manner.

The related results obtained from the particle simulation of
biaxial compression tests have demonstrated that the linear
elastic response of a two-dimensional particle model is inde-
pendent of the sample size, particle size and loading rate,
but it may be dependent on the total number of particles
used in the particle simulation. Therefore, it is recommended
that the particle-size sensitivity analysis of at least two differ-
ent models, which have the same geometry but different small-
est particle sizes, be carried out to confirm the particle
simulation result of a large-scale geological system.

The continuous type of loading procedure may exaggerate the
ductile behavior of brittle rocks so that it is not appropriate for
simulating the brittle behavior of crustal rocks in a particle sim-
ulation. On the contrary, the newly-proposed discontinuous type
of loading procedure can correctly simulate the brittle behavior
of crustal rocks. Thus, the newly-proposed discontinuous
type of loading procedure is more suitable for simulating
spontaneously-distributed crack generation in brittle crustal
rocks. Through the phenomenological modeling of a spontane-
ously-distributed crack generation problem, which is caused
by the formation and evolution of basement controlled reverse
faulting, it has been demonstrated that the particle simulation
method is useful and applicable for simulating spontaneous
crack generation phenomena at geological length scales.
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